Blog Home
Updated: 2023 Oct 09

Programming Collective Intelligence

Introduction to Collection Intelligence

What Is Collective Intelligence?

通常是指:为了创造新的想法,而将一群人的行为、偏好或思想结合在一起。

What Is Machine Learning?

机器学习是人工智能(AI,Artificial Intelligence)领域中与算法相关的一个子域,它允许计算机不断地进行学习。在大多数情况下,这相当于将一组数据传递给算法,并由算法推断出与这些数据的属性相关的信息。 借助这些信息,算法就能预测出未来有可能会出现的其他数据。

Limits of Machine Learning

Real-Life Examples

Other Uses for Learning Algorithms

生物工艺学

金融欺诈侦测

机器视觉

产品市场化

供应链优化

股票市场分析

国家安全

Making Recommendations

Collaborative Filtering (协作型过滤)

Collecting Preferences (搜集偏好)

Finding Similar Users (寻找相近的用户)

Euclidean Distance Score (欧几里德距离评价)

计算每一轴向上的差值,求平方后再相加,最后对总和求平方根。

from math import sqrt

# Returns a distance-based similarity score for person1 and person2
def sim_distance(prefs,person1,person2):
    # Get the list of shared_items
    si={}
    for item in prefs[person1]:
        if item in prefs[person2]: si[item]=1

    # if they have no ratings in common, return 0
    if len(si)==0: return 0

    # Add up the squares of all the differences
    sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2)
                        for item in prefs[person1] if item in prefs[person2]])

    return 1/(1+sqrt(sum_of_squares))

Pearson Correlation Score (皮尔逊相关度评价)

Which Similarity Metric Should You Use? (应该选用哪一种相似性度量方法)

Ranking the Critics (为评论者打分)

Recommending Items (推荐物品)

Matching Products (匹配商品)

Building a del.icio.us Link Recommender (构建一个基于 del.icio.us 的链接推荐系统)

Building the Dataset (构造数据集)

Recommending Neighbors and Links (推荐近邻与链接)

Item-Based Filtering (基于物品的过滤)

Building the Comparison Dataset (构造物品比较数据集)

Getting Recommendations (获得推荐)

Using the MovieLens Dataset (使用 MovieLens 数据集)

User-Based or Item-Based Filtering?(基于用户进行过滤还是基于物品进行过滤)

Comments:

Email questions, comments, and corrections to hi@smartisan.dev.

Submissions may appear publicly on this website, unless requested otherwise in your email.